SST25VF016B # 16 Mbit SPI Serial Flash EOL Supplemental Information #### 1.0 PRODUCT DESCRIPTION The 25 series Serial Flash family features a four-wire, SPI-compatible interface that allows for a low pin-count package which occupies less board space and ultimately lowers total system costs. The SST25VF016B devices are enhanced with improved operating frequency and even lower power consumption than the original SST25VFxxxA devices. SST25VF016B SPI serial flash memories are manufactured with proprietary, high-performance CMOS SuperFlash technology. The split-gate cell design and thick-oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. This document provides supplemental information about the 75/80 MHz parts which are End-of-Life (EOL). Except for the information provided herein, the EOL parts behave as described in the SST25VF016B data sheet DS-20005044. See page 6 for specific part numbers. #### 2.0 DEVICE OPERATION #### 2.1 Instructions Instructions are used to read, write (Erase and Program), and configure the SST25VF016B. The instruction bus cycles are 8 bits each for commands (Op Code), data, and addresses. Prior to executing any Byte-Program, Auto Address Increment (AAI) programming, Sector-Erase, Block-Erase, Write-Status-Register, or Chip-Erase instructions, the Write-Enable (WREN) instruction must be executed first. The complete list of instructions is provided in Table 2-1. All instructions are synchronized off a high to low transition of CE#. Inputs will be accepted on the rising edge of SCK starting with the most significant bit. CE# must be driven low before an instruction is entered and must be driven high after the last bit of the instruction has been shifted in (except for Read, Read-ID, and Read-Status-Register instructions). Any low to high transition on CE#, before receiving the last bit of an instruction bus cycle, will terminate the instruction in progress and return the device to standby mode. Instruction commands (Op Code), addresses, and data are all input from the most significant bit (MSB) first. TABLE 2-1: DEVICE OPERATION INSTRUCTIONS | Instruction | Description | Op Code Cycle ¹ | Address
Cycle(s) ² | Dummy
Cycle(s) | Data
Cycle(s) | Maximum
Frequency | |---------------------------------------|--------------------------------------|---|----------------------------------|-------------------|------------------|----------------------| | Read | Read Memory at 25 MHz | 0000 0011b (03H) | 3 | 0 | 1 to ∞ | 25 MHz | | High-Speed
Read | Read Memory at 80 MHz | 0000 1011b (0BH) 3 | | 1 | 1 to ∞ | 80 MHz | | 4 KByte Sector-
Erase ³ | Erase 4 KByte of memory array | 0010 0000b (20H) | 3 | 0 | 0 | 80 MHz | | 32 KByte Block-
Erase ⁴ | Erase 32 KByte block of memory array | 0101 0010b (52H) | 3 | 0 | 0 | 80 MHz | | 64 KByte Block-
Erase ⁵ | Erase 64 KByte block of memory array | 1101 1000b (D8H) | 3 | 0 | 0 | 80 MHz | | Chip-Erase | Erase Full Memory Array | 0110 0000b (60H) or
1100 0111b (C7H) | 0 | 0 | 0 | 80 MHz | | Byte-Program | To Program One Data Byte | 0000 0010b (02H) | 3 | 0 | 1 | 80 MHz | | AAI-Word-Pro-
gram ⁶ | Auto Address Increment Programming | 1010 1101b (ADH) | 3 | 0 | 2 to ∞ | 80 MHz | | RDSR ⁷ | Read-Status-Register | 0000 0101b (05H) | 0 | 0 | 1 to ∞ | 80 MHz | | EWSR | Enable-Write-Status-Register | 0101b 0000b (50H) | 0 | 0 | 0 | 80 MHz | | WRSR | Write-Status-Register | 0000 0001b (01H) | 0 | 0 | 1 | 80 MHz | TABLE 2-1: DEVICE OPERATION INSTRUCTIONS | Instruction | Description | Op Code Cycle ¹ | Address
Cycle(s) ² | Dummy
Cycle(s) | Data
Cycle(s) | Maximum
Frequency | |-------------------|--|---|----------------------------------|-------------------|------------------|----------------------| | WREN | Write-Enable | 0000 0110b (06H) | 0 | 0 | 0 | 80 MHz | | WRDI | Write-Disable | 0000 0100b (04H) | 0 | 0 | 0 | 80 MHz | | RDID ⁸ | Read-ID | 1001 0000b (90H) or
1010 1011b (ABH) | 3 | 0 | 1 to ∞ | 80 MHz | | JEDEC-ID | JEDEC ID read | 1001 1111b (9FH) | 0 | 0 | 3 to ∞ | 80 MHz | | EBSY | Enable SO to output RY/BY#
status during AAI program-
ming | 0111 0000b (70H) | 0 | 0 | 0 | 80 MHz | | DBSY | Disable SO as RY/BY#
status during AAI program-
ming | 1000 0000b (80H) | 0 | 0 | 0 | 80 MHz | 25044 - 1. One bus cycle is eight clock periods. - 2. Address bits above the most significant bit of each density can be V_{II} or V_{IH} . - 3. 4KByte Sector Erase addresses: use A_{MS} - A_{12} , remaining addresses are don't care but must be set either at V_{IL} or V_{IH} . - 4. 32KByte Block Erase addresses: use A_{MS} - A_{15} , remaining addresses are don't care but must be set either at V_{IL} or V_{IH} . - 5. 64KByte Block Erase addresses: use A_{MS}-A₁₆, remaining addresses are don't care but must be set either at V_{IL} or V_{IH}. - 6. To continue programming to the next sequential address location, enter the 8-bit command, ADH, followed by 2 bytes of data to be programmed. Data Byte 0 will be programmed into the initial address [A₂₃-A₁] with A₀=0, Data Byte 1 will be programmed into the initial address [A₂₃-A₁] with A₀=1. - 7. The Read-Status-Register is continuous with ongoing clock cycles until terminated by a low to high transition on CE#. - 8. Manufacturer's ID is read with A₀=0, and Device ID is read with A₀=1. All other address bits are 00H. The Manufacturer's ID and device ID output stream is continuous until terminated by a low-to-high transition on CE#. #### 2.1.1 HIGH-SPEED-READ (80 MHZ) The High-Speed-Read instruction supporting up to 80 MHz Read is initiated by executing an 8-bit command, 0BH, followed by address bits $[A_{23}$ - $A_0]$ and a dummy byte. CE# must remain active low for the duration of the High-Speed-Read cycle. See Figure 2-1 for the High-Speed-Read sequence. Following a dummy cycle, the High-Speed-Read instruction outputs the data starting from the specified address location. The data output stream is continuous through all addresses until terminated by a low to high transition on CE#. The internal address pointer will automatically increment until the highest memory address is reached. Once the highest memory address is reached, the address pointer will automatically increment to the beginning (wrap-around) of the address space. Once the data from address location 1FFFFFH has been read, the next output will be from address location 000000H. FIGURE 2-1: HIGH-SPEED-READ SEQUENCE #### 3.0 **ELECTRICAL SPECIFICATIONS** **TABLE 3-1:** DC OPERATING CHARACTERISTICS | | | L | imits | | | |-------------------|---------------------------|----------------------|-------|-------|---| | Symbol | Parameter | Min | Max | Units | Test Conditions | | I _{DDR} | Read Current | | 10 | mA | CE#=0.1 V _{DD} /0.9 V _{DD} @25 MHz, SO=open | | I _{DDR2} | Read Current | | 15 | mA | CE#=0.1 V _{DD} /0.9 V _{DD} @50 MHz, SO=open | | I _{DDR3} | Read Current | | 20 | mA | CE#=0.1 V _{DD} /0.9 V _{DD} @80 MHz, SO=open | | I _{DDW} | Program and Erase Current | | 30 | mA | CE#=V _{DD} | | I _{SB} | Standby Current | | 20 | μΑ | CE#=V _{DD} , V _{IN} =V _{DD} or V _{SS} | | ILI | Input Leakage Current | | 1 | μΑ | V_{IN} =GND to V_{DD} , V_{DD} = V_{DD} Max | | I_{LO} | Output Leakage Current | | 1 | μΑ | V_{OUT} =GND to V_{DD} , V_{DD} = V_{DD} Max | | V_{IL} | Input Low Voltage | | 0.8 | V | $V_{DD}=V_{DD}$ Min | | V _{IH} | Input High Voltage | 0.7 V _{DD} | | V | V _{DD} =V _{DD} Max | | V _{OL} | Output Low Voltage | | 0.2 | V | I _{OL} =100 μA, V _{DD} =V _{DD} Min | | V_{OL2} | Output Low Voltage | | 0.4 | V | I _{OL} =1.6 mA, V _{DD} =V _{DD} Min | | V_{OH} | Output High Voltage | V _{DD} -0.2 | | V | I _{OH} =-100 μA, V _{DD} =V _{DD} Min | **TABLE 3-2: AC OPERATING CHARACTERISTICS** | | | 80 | | | |--------------------------------|------------------------------------|-----|-----|-------| | Symbol | Parameter | Min | Max | Units | | F _{CLK} ¹ | Serial Clock Frequency | | 80 | MHz | | T _{SCKH} | Serial Clock High Time | 6 | | ns | | T _{SCKI} | Serial Clock Low Time | 6 | | ns | | T _{SCKR} ² | Serial Clock Rise Time (Slew Rate) | 0.1 | | V/ns | | T _{SCKF} | Serial Clock Fall Time (Slew Rate) | 0.1 | | V/ns | | T_{CFS}^3 | CE# Active Setup Time | 5 | | ns | | T _{CFH} ³ | CE# Active Hold Time | 5 | | ns | | T _{CHS} ³ | CE# Not Active Setup Time | 5 | | ns | | T _{CHH} ³ | CE# Not Active Hold Time | 5 | | ns | | T _{CPH} | CE# High Time | 50 | | ns | | T _{CHZ} | CE# High to High-Z Output | | 7 | ns | | T _{CLZ} | SCK Low to Low-Z Output | 0 | | ns | | T _{DS} | Data In Setup Time | 2 | | ns | | T _{DH} | Data In Hold Time | 4 | | ns | | T _{HLS} | HOLD# Low Setup Time | 5 | | ns | | T _{HHS} | HOLD# High Setup Time | 5 | | ns | | T _{HLH} | HOLD# Low Hold Time | 5 | | ns | | T _{HHH} | HOLD# High Hold Time | 5 | | ns | | T _{HZ} | HOLD# Low to High-Z Output | | 7 | ns | | T_{LZ} | HOLD# High to Low-Z Output | | 7 | ns | | T _{OH} | Output Hold from SCK Change | 0 | | ns | | T _V | Output Valid from SCK | | 6 | ns | | T _{SE} | Sector-Erase | | 25 | ms | | T _{BE} | Block-Erase | | 25 | ms | | T _{SCE} | Chip-Erase | | 50 | ms | | T _{BP} | Byte-Program | | 10 | μs | ^{1.} Maximum clock frequency for Read Instruction, 03H, is 25 MHz 2. Maximum Rise and Fall time may be limited by T_{SCKH} and T_{SCKL} requirements 3. Relative to SCK. #### SST25VF016B #### **TABLE 3-3: REVISION HISTORY** | Revision | Description | Date | |----------|-----------------------------------|----------| | Α | Initial release of EOL data sheet | Apr 2015 | #### THE MICROCHIP WEB SITE Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: - Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software - General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing - Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives ### CUSTOMER CHANGE NOTIFICATION SERVICE Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions. #### **CUSTOMER SUPPORT** Users of Microchip products can receive assistance through several channels: - · Distributor or Representative - · Local Sales Office - Field Application Engineer (FAE) - · Technical Support Customers should contact their distributor, representative or Field Application Engineer (FAE) for support Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://microchip.com/support #### 4.0 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. | PART NO
Device | Operating Frequency | - XX - XX - X Minimum Temp Package Tape/Reel Endurance Range Indicator | Valid Combinations:
SST25VF016B-75-4I-S2AE
SST25VF016B-75-4I-S2AE-T
SST25VF016B-75-4I-QAE
SST25VF016B-75-4I-QAE-T | |-------------------------|---------------------|--|---| | Device: | SST25VF016B | = 16 Mbit, 2.7-3.6V, SPI Flash Memory | 33123VI 010D-73-4FQAL-1 | | Operating
Frequency: | 75 | = 75 MHz (80 MHz) | | | Minimum
Endurance | 4 | = 10,000 cycles | | | Temperature: | I
C | = -40°C to +85°C
= 0°C to +70°C | | | Package: | QAE
S2AE | = WSON (6mm x 5mm Body), 8-lead
= SOIC (200 mil Body), 8-lead | | | Tape and
Reel Flag: | Т | = Tape and Reel | | #### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949 == #### **Trademarks** The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELoQ, KEELoQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN:978-1-63277-221-3 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. #### **Worldwide Sales and Service** #### **AMERICAS** **Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 **Austin, TX** Tel: 512-257-3370 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca. IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 **Detroit** Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 **Canada - Toronto** Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC **Asia Pacific Office** Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 **China - Dongguan** Tel: 86-769-8702-9880 **China - Hangzhou** Tel: 86-571-8792-8115 Fax: 86-571-8792-8116 China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 #### ASIA/PACIFIC China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-3019-1500 Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 Taiwan - Kaohsiung Tel: 886-7-213-7828 Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany - Dusseldorf** Tel: 49-2129-3766400 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Germany - Pforzheim Tel: 49-7231-424750 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Venice Tel: 39-049-7625286 **Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340 Poland - Warsaw Tel: 48-22-3325737 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Stockholm Tel: 46-8-5090-4654 **UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820 01/27/15